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Abstract 
 

This study aimed to provide a guideline for the proper use of a survival model in an educational 

research field in which discrete and continuous models often need clarification. To achieve the 

goal, we compared discrete- (logit) and continuous-time (complementary log-log) survival 

models by considering the hazard rate. We simulated data for various combinations of time 

metrics, censoring proportions, and sample size. The study results recommend discrete models 

for cases with large time metrics, small proportions of censored observations, and small samples. 

The study highlights the importance of adopting a proper model in using survival analyses. 

 

Keywords: survival analysis; discrete (logit) model, continuous (clog-log) model, censoring 

proportion, hazard rate, sample size, time metric 
 

1. Introduction 
 

Survival analysis is an advanced statistical method that deals with dichotomous outcomes in longitudinal data. 

Survival analysis has been prevalently adopted by medicine and biology to estimate the time to events such as 

death, recovery from disease, or treatment responses. (Klein & Moeschberger, 2003). Recently, survival analysis 

has been used in education fields by modeling the occurrence of events, such as student dropouts or teacher 

attrition, in a longitudinal time frame (Kelly, 2004; Kirby, Berends & Naftel, 1999; Ma & Willms, 1999; Murphy, 

Gaughan, Hume & Moore, 2010; Plank, DeLuca, & Estacion, 2008). Survival analysis estimates a hazard 

function, also called a conditional risk, such that a target event will occur, given that the target event has not 

happened yet. It also uses two-event estimation methods: discrete-time and continuous-time estimations (Singer & 

Willet, 2003). The discrete-time estimation uses the time to a target event in a large time metric, such as a year, 

quarter, or month. Continuous time estimation records an event time with a precise and fine metric, such as an 

hour, day, or week.  
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Despite the clear distinction between discrete- and continuous-time estimation, literature reviews show 

that many studies have adopted either of them without clear distinctions (Calcagno, Crosta, Bailey & Jenkins, 

2007; Doyle, 2006; Donaldson & Johnson, 2010; Kahn & Schwalbe, 2010; Kelly, 2004; Kirby, Berends & Naftel, 

1999; Ma & Willms, 1999; Murphy, Gaughan, Hume & Moore, 2010; Murtaugh, Burns & Schuster, 1999; Singer, 

1992; Singer, Davidson, Graham & Davidson, 1998). Adopting a survival model without an empirical and 

theoretical understanding can be problematic because an incorrect model may result in biased estimates and 

incorrect conclusions.  
 

In response, this study attempts to provide analysis results using various simulated data and 

attempts to suggest a guideline for selecting a discrete or continuous model for survival analysis. 

Specifically, this study compared logit and complementary log-log (clog-log) models, representing 

discrete and continuous models. This study paid particular attention to a hazard rate, which has been identified 

as an essential variable in distinguishing between the two models (Hess, 2009; Hosmer & Lameshow, 1999; 

Singer & Willet, 2003). Furthermore, the study included three factors closely associated with hazard rate. These 

factors are time metrics, censoring proportion, and sample size. By combining the three factors, this study 

simulated a series of data to employ both logit and clog-log models. The parameter estimates and fit statistics 

resulting from the two model analyses were compared to investigate the discrepancy between the two estimation 

methods. 
 

To achieve the goal, the study adopted the following overarching research question:  
 

o How different are the outcomes of the logit and complementary log-log survival models in various data 

conditions?  
 

The study also addressed the next three research questions:  
 

• Do hazard rates lead to discrepancies between the two model outcomes? If they do, in which condition of 

hazard rates does a discrepancy appear?  

• Do time metrics influence discrepancies between the two model outcomes? If they do, in which condition 

of time metrics does a discrepancy show?  

• Do censoring proportions associate with discrepancies between the two model outcomes? If they do, in 

which condition of censoring proportions does a discrepancy appear?  

• Do sample sizes relate to discrepancies between the two model outcomes? If they do, in which condition 

of sample sizes does a discrepancy reveal?  
 

2. Literature review  
 

2.1.  Survival analysis 
 

Using longitudinal data, survival analysis estimates whether, when, and why an event of interest (target 

event) occurs (Singer & Willet, 2003). When conducting a survival analysis, researchers should consider not only 

the onset of the target event but also the time metrics, tied observations, and censored observations. The time 

metrics can be measured in either discrete or continuous time units. Discrete-time units record the time passage in 

a large (broader) metric (i.e., semester or year), while continuous time units record the time passage in a fine 

(more precise) metric (i.e., day, hour, or minute). The time metrics also determine the tied observations, which are 

defined as two or more observations that occur at the same time. Therefore, when there are smaller time units, 

there will be fewer tied observations. Censored observations refer to cases in which the target event does not 

occur during the study's data collection. It is important to note that survival analysis takes censored observations 

into account in its modeling, which makes its design stronger than other longitudinal analyses.  
 

2.2. Discrete-time vs. continuous-time hazard models 
 

Discrete-time survival analysis estimates the risk (probability) of the target event’s occurrence in 

comparatively larger time units. The risk is estimated as a conditional probability that the event of interest will 

occur. The discrete-time survival analysis assumes that two or more observations will occur simultaneously, as it 

uses broad time metrics. Thus, the discrete-time survival analysis is recommended in the case of strong ties, 

which does not lead to biased estimates for those conditions. 
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Continuous time estimation records the occurrence of events in fine units such as minutes, hours, or 

days. Among continuous-time survival models, the most popular model is the Cox proportional hazard model 

(Singer & Willet, 2003). According to the Cox proportional hazards model, a hazard is estimated as an 

instantaneous change in the occurrence rate of the event. When building a Cox proportional hazard model, one 

should be very careful in dealing with ties because the Cox model is very sensitive to ties and may lead to invalid 

results. Common methods to manage ties in continuous-time survival analysis include the exact method, the 

Breslow-Peto approximation, and the Efron approximation (Hertz-Picciotto & Rockhill, 1997). The exact method 

treats all the possible combinations of observations in ranking tied observations. The Breslow-Peto approximation 

randomly posits a sequential occurrence of tied observations. The Efron approximation assumes all the possible 

rankings of tied observations but adopts simple computations. Among these three methods, the exact method is 

the most recommended, followed by the Efron approximation (Prentice & Gloeckler, 1978; Singer & Willet, 

2003).  
 

However, when there are more tied observations than untied observations in the data, then none of the three tie-

handling methods would work. Singer and Willet (2003) suggested that discrete-time methods should be used for 

such cases instead of continuous-time survival analysis. Similarly, Hess and Persson (2010) compared estimates 

from a Cox proportional model and a discrete model. The results showed that a Cox proportional model resulted 

in biased coefficients and standard errors from the data with heavy ties.  
 

2.3. The mixed use of discrete or continuous models in the literature 
 

To explore how survival analysis has been used in the field, thirteen studies that used survival analysis as 

the main statistical tool were summarized. Most of the studies indicated confusion over two estimation methods 

regardless of time metrics. Six studies among the thirteen adopted a continuous time estimation method by 

building a Cox regression model for relatively large time metrics without much explanation for their choice of the 

continuous model (Doyle, 2006; Kelly, 2004, Kirby, Berends & Naftel, 1999; Murphy, Gaughan, Hume, & 

Moore, 2010; Murtaugh, Burns & Schuster, 1999; Plank, DeLuca, & Estacion, 2008). Moreover, the seven studies 

that used a year as a time metric adopted either discrete (Donaldson & Johnson, 2010; Ma & Willms, 1999; 

Singer, 1992) or continuous survival analysis (Doyle, 2006; Kelly, 2004, Kirby, Berends, & Naftel, 1999; 

Murphy, Gaughan, Hume, & Moore, 2010). Four studies that chose a semester as a time metric used discrete 

(Calcagno, Crosta, Bailey & Jenkins 2007; Kahn & Schwalbe, 2010; Singer, Davidson, Graham & Davidson, 

1998) or continuous analysis (Murtaugh, Burns & Schuster, 1999). Two studies used a month as a time metric for 

discrete (Jacobs & King, 2002) or continuous analysis (Plank, DeLuca, & Estacion, 2008). Most of all, these 

studies did not indicate a proper rationale for using either a continuous or a discrete model. Doyle (2006) chose a 

continuous-time survival analysis because of the common practice of building a continuous model based on the 

characteristics of the target events in the author’s field of research.  
 

Another problem of prior studies is the fact that the researchers adopted either a continuous or a discrete 

model without considering important factors for survival model-building. For example, Plank, DeLuca, and 

Estacion (2008) chose a continuous model with an exact method because the authors did not find any difference 

in the parameter estimates between continuous and discrete models without consideration of hazard rates. 

Obviously, a guideline that suggests the proper use of either a discrete or a continuous model is needed. 
 

2.4.  A logit model and a complementary log-log model 
 

In the survival analysis, the risk (probability) of a target is estimated as a hazard (h(tij)) as follows: 
 

h(tij) = n eventsj / n at riskj 

Where n eventsj refers to the number of samples that experience an event in time period j and n at riskj indicates 

the number of samples that have not yet experienced the event up to the time period j.  

For the discrete hazard model, this study adopted a logit model; one of the most common discrete models 

(Allison, 2010; Singer & Willet, 2003). To estimate a hazard, a logit model uses the following link function:  

Logit (p)= log[pi/(1-pi)]  

Where pi stands for the probability of an event for the ith observation. In the study, Allison’s logit model (2010) 

was used to estimate the parameters for the discrete hazard model.  

Logit h(tij) =α1D1ij + α2D2ij + … + αJDJij  
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Where intercept parameters α1, α2, … , αJ indicate the logit hazard of the respective time periods.  
 

Following the recommendations of prior studies for the case of heavy ties when building a Cox 

proportional model, this study adopted a complementary log-log (clog-log) model for the continuous hazard 

model (Allison, 2010; Hosmer & Lameshow, 1999). The clog-log model was equivalent to the exact method of 

the Cox proportional model, which is known to generate the most precise parameter estimates in the case of 

strong ties. In particular, the clog-log model was suitable for this study because the clog-log model produced a 

clog-log hazard for each time period, which can be compared with those from the discrete model.  
 

The clog-log model transforms a hazard into a complementary log-log probability. The logarithm of the 

negated logarithm of the probability of event nonoccurrence is as follows: 
 

The hazard of clog-log = log(-log(1-probability)) 

The study adopted the clog-log hazard by Allison (2010) as follows: 

Clog-log h(tij) = α1D1ij + α2D2ij + … + αJDJij 
 

Where intercepts α1, α2, … , αJ indicate the clog-log hazard for each time period.  
 

The specifications of the clog-log model are very similar to those of the discrete model. The only 

difference is that the clog-log model estimates a clog-log hazard while the discrete model estimates a logit hazard.  
 

2.5. Existing studies: a logit vs. a clog-log model 
 

Studies have been conducted to compare a logit model with a clog-log model and found no difference 

between them. Allison (2010) empirically investigated the difference between these two methods by using the 

same data and found similar parameter estimates. The p-values of covariate estimates of the two methods were 

similar, while parameter estimates of a logit model were slightly larger than those of a clog-log model. Allison 

argued that parameter estimates from a discrete model tend to be larger than those of a clog-log model. Similar 

results were also noted in other studies. Colosimo, Chalita, and Demétrio (2000) compared logit and clog-log 

models for data from various conditions of 12-time metrics, a sample size of 198, hazard rates between 0.005 to 

0.44, and a 25% censoring proportion. Using likelihood ratio tests, the researchers did not detect discrepancies 

between these two models. Corrente, Chalita, and Moreira (2003) attempted to provide a guideline for a clog-log 

or a logit model using data for 286 samples with high-tied events during 52 intervals. The authors were not able to 

identify a discrepancy between the two models by using residuals and fit statistics.  
 

In sum, the study findings on the difference between the two models are inconclusive. This is partly 

because these studies have yet to incorporate essential factors into their studies. In response to the findings, this 

study compared the two models taking important factors into account. The first factor that the study considered is 

a hazard. In addition, this study also paid attention to the factors that influence the hazard, such as time metric, 

censoring proportion, and sample size.  
 

2.6. Hazards  
 

The hazard has been identified as an important factor that determines the discrepancy between a logit and 

a clog-log model. According to Hosmer and Lameshow (1999), while the outcome of a clog-log model is similar 

to that of a logit model, when a hazard is smaller than 0.15, the difference between the two models becomes 

notable when a hazard is greater than 0.15. Similarly, Singer and Willet (2003) found a difference between a logit 

and a clog-log model outcomes during periods with a high hazard. However, the authors did not notice differences 

in parameter estimates from the two models. Hess (2009) also found a great difference in the estimated parameters 

from clog-log and logit models when a hazard was as high as 0.3. However, no difference was noted in the 

parameter estimates for the periods with a hazard lower than 0.3.  
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2.7. Time metrics 
 

The major difference between discrete and continuous survival models is the unit used to measure the 

timing of an event. A discrete model uses comparatively large time metric, resulting in a small number of waves 

(frequency). A continuous model uses a continuous time metric, leading to a large number of waves. A small 

number of waves will force many events into the same wave even though the events occurred at different time 

points. Thus, the presence of many tied observations will lead to a high hazard rate. This will increase the 

potential discrepancy between the logit and clog-log models, while a large number of waves will lead to a low 

chance of a discrepancy, by having a low hazard rate. 
 

The study conducted by Hofstede and Wedel (1999) showed the effect of the size of time metrics on the 

potential discrepancy between the logit and clog-log models. The researchers built both continuous and discrete-

time hazard models using different sizes of time metrics. They found that when time metrics were aggregated into 

a large unit, the discrepancy in parameter estimates between continuous and discrete-time hazard models was 

large. In other words, when a small time metric (originally a day) was aggregated into a week or a month, the 

hazard estimates in discrete models were overestimated while those in continuous models were underestimated.  
 

2.8. Censoring proportion 
 

Censored data represents the sample data for which a target event does not occur during the data 

collection period. Censoring is an important factor when comparing discrete and continuous survival models. This 

factor is important because the censoring proportion influences the number of cases that experience the target 

event, which changes the number of tied observations and the hazard rates. Despite the importance of the 

censoring proportion in distinguishing between discrete and continuous models, there is little or no research that 

paid attention to the different proportions of censoring as a main interest. 
 

Hertz-Picciotto and Rockhill (1997) discussed the importance of censoring in survival analysis, although 

the authors did not include the censoring proportion in their model. According to the authors, censoring reduced 

the estimate biases because it kept the tie proportion low. A study conducted by Colosimo, Chalita, and Demétrio 

(2000) generated data with censoring proportions of 0%, 30%, and 60% to examine the effects of censoring on the 

two methods. However, the researchers explored the effects of censoring proportions in a variety of sample sizes. 

Therefore, they did not solely explore the effect of the censoring proportion. Hess (2009) also paid attention to 

low (16%-20%) and high censoring proportions (24%-27%). Hess found that increasing the censoring proportions 

increased the standard deviations of the parameter estimates but did not result in a discrepancy in the parameter 

estimates.  
 

2.9. Sample size  
 

Given the fact that a large sample size leads to a more robust statistical analysis, it is surprising that there 

is a lack of research on sample size relating to the proper use of survival analysis. When research can be found, it 

is complicated by the mixed results regarding the effect of sample size for discrete and continuous hazards 

models. In Hess’ study (2009), the logit and clog-log models displayed a difference when the sample size was 

equal to or more than 1,000. This result was due to the large sample having more tied observations. In contrast, 

the study conducted by Hertz-Picciotto and Rockhill (1997) showed that the discrepancy between the two models 

was larger with a small sample. The researchers compared three methods (the Breslow, Kalbflesch-Prentice, and 

Efron methods) of treating ties for the Cox proportional model by differentiating between sample sizes. Hertz-

Picciotto and Rockhill used four different sample sizes of 50, 100, 500, and 1,000 and found that all three 

methods, treating ties, displayed biased estimates when the sample size was 50. However, the discrepancy was 

due to the design of the study. The researchers fixed the number of ties across different sample sizes, resulting in 

the creation of a high hazard when the sample was small. Therefore, their study emphasized the tied observations 

more than the influence of sample size. Unfortunately, there are few studies that have examined the effect of 

sample size while keeping other factors constant. This study sought to contribute information in regard to the 

sample size and its effect on survival model outcomes.  
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3. Methodology 
 

In spite of the conceptual difference between discrete and continuous survival models, the current 

literature review reveals the mixed use of these two models without a clear rule. In response, this study compared 

two analyses – logit and clog-log survival analysis – in 60 conditions by combining three factors. The three 

factors that were combined are  three time metrics (4, 12, and 48); five censoring proportions (0%, 20%, 40%, 

60%, and 80%); and four sample sizes (50, 100, 500, and 1,000). The study simulated the data by combining 

varying levels of the factors. Using the simulated data, both discrete and continuous survival analyses were built 

to compare the parameter estimates and fit statistics.  
 

3.1. Data generation 
 

The data was generated using SAS with a variety of time metrics, censoring proportions, and sample 

sizes. These three factors combined determine hazards. , The number of cases that experienced the target event 

was determined for each data set was based on the total sample size and censoring proportions. The study 

generated 60 combinations of data when the three-time metrics, five censoring proportions, and four sample sizes 

were combined.  
 

The study specified three types of time metrics of 4, 12, and 48 which emulated educational conditions. 

For example, for the case of 4 years of high school, one can choose the base unit as a year, quarter, or month. 

When a year is chosen, 4 is the time metric; when a quarter is chosen, 12 is the time metric; and when a month is 

chosen, 48 is the time metric.  
 

The study included 5 censoring proportions to make a possible range of 0%, 20%, 40%, 60%, and 80%. 

The censoring proportion indicates cases that did not experience the target event. The study assumed the right-

hand censoring, meaning that the censoring occurred at the end of the data collection period.  
 

This study selected the following sample sizes: 50, 100, 500, and 1,000, as prior researchers such as 

Hertz-Picciotto and Rockhill (1997) used. The raw hazard was calculated by dividing the number of the risk set 

(cases that did not experience the target event until that time) with the number of events in each period. First, the 

total number of events (cases that experienced the target event) was obtained by multiplying the total sample size 

by an uncensored proportion (100%-censoring proportion). The number of events (tied observations) per period 

was calculated by dividing the total number of events by the number of periods. The hazard rate is estimated as a 

proportion of the number of tied observation (events) per each period out of the number of the risk set (the total 

number of cases in which the target event did not occur to up to that period). This study assumed right-hand 

censoring and no missing data. 
 

3.2. The model of the study: Discrete (logit model) vs. Cox (exact; clog-log model) 
 

The three equations for the logit and clog-log models were specified as follows: 
 

Using 4-time metrics:  

 

Logit h(tij) = α1D1ij + α2D2ij + α3D3ij + α4D4ij      (3.1) 

Clog-Log h(tij) = α1D1ij + α2D2ij + α3D3ij + α4D4ij     (3.2) 

 

Using 12-time metrics: 

 

Logit h(tij) = α1D1ij + α2D2ij + α3D3ij + … + α10D10ij + α11D11ij + α12D12ij   (3.3) 

Clog-Log h(tij) = α1D1ij + α2D2ij + α3D3ij + … + α10D10ij + α11D11ij + α12D12ij  (3.4) 

 

Using 48-time metrics: 

 

Logit h(tij) = α1D1ij + α2D2ij + α3D3ij + …+ α46D46ij + α47D47ij + α48D48ij   (3.5) 

Clog-Log h(tij) = α1D1ij + α2D2ij + α3D3ij + …+ α46D46ij + α47D47ij + α48D48ij  (3.6) 
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3.3. Maximum likelihood estimation 
 

As an estimation method, this study adopted the maximum likelihood method. This method estimates 

population parameters by maximizing the probability that the sample data will be observed. The likelihood 

function stands for the likelihood of observing the pattern of event occurrence or non-occurrence in a dataset. In 

the case of the discrete (logit) model, the likelihood function was specified as follows: 

 
Where h(tij) refers to the probability that the event will occur to an individual i in the j period. EVENTij indicates 

whether the event happens to an individual i in the j period; 1 indicates an event occurrence, while 0 indicates no 

event occurrence. 

 

The likelihood function shown above was simplified into the following log-likelihood (LL) function. 

 
(Singer & Willet, 2003) 

 

The maximum likelihood estimation function for the clog-log model is as follows:  

 

 
(Franklin, 2005) 

 

3.4. Model comparison 
 

After building two models, the study compared the parameter estimates with significance levels (the 

hazard of the respective period) and model fit statistics. The hazard estimates from the two models were also 

compared with significance levels of 0.05 and 0.01.  
 

To assess fit for the two models, the study used the goodness-of-fit statistics for 60 conditions. The goodness-of-

fit statistics used -2LL, which was converted from a log-likelihood statistic (LL). In particular, the study adopted 

the Akaike Information Criterion (AIC) because the models under comparison are non-nested models (see 

Allison, 2010; Singer & Willet, 2003). The smaller the values are, the better fit the model demonstrates. The AIC 

is calculated by being penalized based on the number of parameters as follows:  

 

AIC = -2LL + 2p  

 

Where p indicates the number of parameters. 
 

4. Results 
 

4.1. Hazard estimates 
 

With regard to time metrics, the smaller time metrics were associated with more discrepancies as shown 

in Table. The use of four-time metrics revealed the most discrepancies. Among all 20 conditions of the 4-time 

metrics, 8 conditions displayed discrepancies between two models in terms of the significance levels of the 

estimates, between the two models. The use of 12-time metrics revealed discrepancies in 7 conditions, while the 

use of 48-time metrics showed discrepancies in only 2 conditions.  
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Table. Hazard Estimates across Different Time Metrics. Censoring Proportions, and Sample Sizes 

 

  

  
Logit Clog-Log  Discrepancy 

Frequency 

AIC 

Difference 
Different Conditions  Estimate   SE Estimate   SE 

Time Metrics 4 Times -1.700 0.090 -1.870 0.230 8 517 

12 Times -2.926 2.098 -2.664 2.165 7 1,935 

48 Times -4.039 0.596 -3.807 0.785 2 8,567  
       

Censoring 

Proportions 
0% -1.682 21.699 -2.123 2.070 9 5,581 

0.2% -2.292 7.355 -2.563 0.555 7 6,564 

0.4% -2.916 0.573 -2.930 0.564 1 7,718 

0.6% -3.192 0.566 -3.201 0.560 0 8,857 

0.8% -3.672 1.154 -3.675 1.067 0 10,712  

     
  

Sample Sizes 50 -2.575 16.334 -2.798 2.252 6 330 

100 -3.237 8.514 -3.392 1.323 4 742 

500 -3.674 2.947 -3.791 0.590 4 4,376 

1,000 -3.669 2.296 -3.789 0.419 3 8,739 

 

The examination of censoring proportions revealed that fewer censoring proportions were associated with 

greater discrepancies between the two models, as provided in Table. The number of estimates that showed 

differences between the two models was the highest when the censoring was 0%. Out of 12 conditions of 0% 

censoring, the parameter estimates of 9 conditions revealed different significance levels. The three conditions that 

showed matched results from the two models were the data with large samples (500 and 1000) and large time 

metrics (48).  
 

The non-matching results were displayed with a 20% censoring proportion, in which 7 out of 12 

conditions produced non-matching estimate results. However, a smaller number of discrepancies was detected for 

the 40% censoring proportion; only one condition displayed a discrepancy. No discrepancies were detected for the 

60% and 80% censoring proportions.  
 

Among the four different sample sizes (50, 100, 500, and 1,000), the smaller samples showed more 

discrepancies as revealed in Table. Out of fifteen conditions that had 50 cases, six conditions revealed 

discrepancies. In the samples of 100 and 500 cases, four conditions showed discrepancies; while in the 1000-case 

samples, only three conditions showed discrepancies.  
 

The study also calculated and compared the raw hazard rates of the parameter estimates that showed 

discrepancies between the clog-log and logit models. The results showed that the range of the hazard rates of the 

estimates ranged from 0.12 to 0.50, with 14 cases having hazard rates higher than 0.21. The important findings of 

the study regarding the hazard rates and discrepancies of the two models were that: when the parameter estimates 

showed a discrepancy, they displayed high hazard rates. However, the reverse was not true. In other words, the 

high hazard rates did not always lead to discrepancies.  
 

Overall, the magnitude of the parameter estimates of the logit and clog-log models were similar, while the 

magnitudes of the logit model were larger than those of the clog model (Allison, 2010).  The average hazard 

estimates from both the logit and clog-log models are included in Table. It is important to note that a big 

discrepancy in the hazard estimates was detected in the case of 0% censoring. The hazard estimates of the logit 

models ranged from 14.2029 to 17.2029, while those of the clog-log models ranged from 2.6824 to 2.8746.  
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4.2. AIC differences 
 

 The study found that the models of  logit with a small number of time metrics, a small proportion of 

censoring, and a small sample tended to show a low AIC value (See Table for details). For example, the smallest 

AIC value (177) was found in the logit model with 0% censoring, 4 time metrics, and 50 cases. The largest AIC 

(86,831) was found in the clog-log model with 80% censoring, 48 time metrics, and 1,000 cases.   
 

In all conditions, the logit models showed better fit statistics with lower values of AIC than the clog-log 

models for the same conditions (showing a difference ranging from 24 to 26,350). The smallest AIC difference 

(24) was from the comparison of a logit model (AIC =177) with a clog-log model (AIC=202) with 0% censoring, 

4 time metrics, and 50 cases. The largest difference (26,350) resulted from the comparison of a logit model (AIC= 

6,011) with a clog-log model (AIC= 86,361) with 80% censoring, 48 time metrics, and 1,000 cases.  
 

5. Discussion 
 

This study attempted to provide a guideline for empirical researchers of survival analysis in response to 

the confusion regarding the proper use of discrete or continuous models of survival analysis.. The study adopted a 

logit model as a discrete model and a clog-log model as a continuous model. Most importantly, this study 

confirmed the need for a guideline through the study’s results, which indicated discrepancies between the discrete 

and continuous models in many conditions. The study also verified the importance of time metrics, censoring 

proportions, and sample size in addition to hazard rates in choosing survival models. Furthermore, the study 

addressed the interaction effects of the three factors affecting the discrepancy of the outcomes of a logit model 

and a clog-log model in the same condition.  
 

To examine the effect of the three factors, this study generated 60 sets of data by combining different 

levels of the factors: time metrics (4, 12, and 48); censoring proportions (0%, 20%, 40%, 60%, and 80%); and 

sample size (50, 100, 500, and 1,000). After employing two methods to each of 60 simulation conditions, the 

study compared the parameter estimates and fit statistics to evaluate the performance of the two models.  
 

 Only a small number of time metrics were associated with greater discrepancies. This discrepancy pattern 

was particularly detected with small censoring proportions. This may have happened because, when there is a 

small number of time metrics, there will be a large number of tied observations and a high hazard rate for a period 

with a fixed number of cases. Thus, when the data is measured using large time metrics, such as 4 or 12 times, 

with small censoring proportions (less than or equal to 20%), it is recommended to build a discrete model 

regardless of sample size. For these conditions, a continuous model would produce biased estimates. When the 

data is measured in fine units such as 48 time metrics, the building of either continuous or discrete models should 

be considered.  
 

The study results indicated that a small censoring proportion was associated with greater discrepancies 

because low censoring indicates more events during each time period. In particular, discrepancies that occurred in 

the conditions with less than 40% censoring. The discrepancies are more pronounced when low censoring was 

combined with small sample sizes and small-time metrics. Thus, this study recommends the following: when the 

censoring proportions are equal to or less than 40%, it is desirable to build a discrete model. It is highly 

recommended to build a discrete model when there is are small censoring proportions in small samples (equal to 

or less than 500) with small time metrics. 
 

In regard to sample size, smaller samples were associated with greater discrepancies between the two 

models. However, compared with censoring proportions and time metrics, the sample size did not lead to much 

discrepancy between the two models. As suggested by previous studies, higher hazard rates were associated with 

greater discrepancies. However, there were some exceptions. Therefore, the study suggests that a choice of model 

based on hazard rates should be made in consideration of other three factors.  
 

Overall, the discrete models showed better fit statistics than the continuous models. In all 60 conditions, 

the discrete models indicated comparatively small deviances. Singer and Willet (2003) suggested that discrete 

models should be used when there are more tied observations than unique observations.  
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By employing both continuous and discrete models to the simulated data, the study estimated hazard rates for the 

parameter estimates, exploring discrepancies between two models. The main focus of the study was on detecting 

the effects of the three factors of time metrics, censoring proportions, and sample size in addition to hazard rates. 

However, the study did not pay attention to other covariates (other predictor variables). The study suggests that 

future studies should extend the scope by including other important covariates and estimate hazards in order to 

examine interactional effects. 
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