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Abstract 
 

As a consequence of weak algebra skills, many first semester calculus students have difficulty 

understanding worked examples when instructors skip algebraic steps when teaching. Cognitive 

load theory reveals why skipping steps hinders learning when students lack algebra proficiency. 

Cognitive load theory also reveals why a traditional approach to teaching calculus is effective 

when written classroom examples are well-organized and include verbal explanations. 
 

Research literature indicates, as students’ abilities change instructional practices should change 

as well. Because students are exceptionally weak in algebra at the beginning of calculus, 

instructors should avoid skipping algebraic steps at the beginning of the course. As students’ 

algebra proficiency steadily increases, instructors should gradually skip algebraic steps when 

writing worked examples in class. 

 

Keywords: Chunking, Cognitive Load Theory, high-element interactivity, low-element 

interactivity, schema. 

 
Introduction 
 

Background of the Problem 
 

Weak Algebra Skills 
 

Many students entering college are weak in algebra including students majoring in science, mathematics, and 

engineering (Bailey, Jeong & Cho, 2010; Budny, Bjedov & LeBold, 1998; Jourdan, Cretchley & Passmore, 

2007). Between 1966 and 1993, engineering students at Purdue University dropped engineering as their major due 

to struggles in calculus (Budny, Bjedov & LeBold, 1998). Science departments at Purdue performed studies to 

determine why so many Purdue students struggle in courses such as physics, chemistry and calculus. The findings 

indicated weak algebra skills were the underlying problem in all the said sciences courses, including calculus 

(Budny et al., 1998).  
 

In a study by Jourdan, Cretchley and Passmore (2007), new college students at an Australian university, whose 

majors were engineering or science, were found to be weak in algebra. Over 40% of the students were unable to 

factor basic quadratic expressions and solve simple quadratic equations. Fifty-nine percent of the Australian 

students were incapable of subtracting two rational expressions and, given ( )f x , 61% were unable to find

( )f x h  
 

In a study by Orton (1983), 110 calculus students from both high schools and colleges were clinically 

interviewed. Orton found these students struggled with solving basic algebraic equations. In the process of 

working calculus problems, Orton found several students were unable to correctly solve the quadratic equation
23 6 0x x  . Not only did students make procedural mistakes but, many gave one solution, suggesting several 

students could not identify the equation as quadratic or they did not understand quadratic equations have two 

solutions. In other words, many students lacked both procedural and conceptual understanding.  
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In another study by Martin (2000), which focused on large urban university calculus students’ ability to solve 

related rates problems, the author assumed students had considerable prior experience with solving algebraic 

equations. The author also assumed students were proficient in algebra. Students did in fact have a decent amount 

of experience but, Martin found students lacked fundamental algebra skills. Martin’s conclusion was students’ 

prior achievement in algebra does not imply algebra proficiency nor sufficient readiness for calculus. 
 

Even when students are well prepared in algebra professors of science, math, and engineering (SME) often claim 

students should be weeded out (Daempfle, 2003). SME faculty also believe the intrinsic difficultly of SME is a 

key contributor to high attrition rates (Daempfle, 2003). However, such claims are founded on opinion and not 

from research literature (Seymour & Hewitt, 1994). For example, despite the claim of intrinsic difficulty being a 

main reason for attrition, only 12% of mathematically prepared SME students change majors because of intrinsic 

difficulty (Daempfle, 2003). In a three year study with 335 students from seven universities, Seymour and Hewitt 

(1994) found the primary reasons mathematically prepared students switch their major from SME to another 

major is because of ineffective teaching and indifferent attitudes of instructors. Whether students are sufficiently 

prepared mathematically or not, ineffective classroom instruction contributes to high attrition rates in SME 

(Daempfle, 2003). 
 

Instructional Design 
 

Quality instruction in mathematics courses is positively correlated with student learning (Carrell & West, 2008). 

Because a large amount of traditional calculus (as opposed to calculus reform) relies on students performing 

algebraic computations, algebra proficiency is crucial for success (Heid & Edwards, 2001; Tall, 1993). Yet 

students entering first semester calculus are generally weak in algebra (Budny et al., 1998; Jourdan et al., 2007; 

Martin, 2000; Orton, 1983). Hence the question, what approach to teaching first semester calculus is effective 

given that many students are weak in algebra? In this study, Cognitive Load Theory (CLT) will be the basis for 

developing methods of instruction which lead to proficiency in algebra while learning the calculus.  
 

Statement of the Problem 
 

Skipping Steps 
 

Similar to the assumption made by Martin (2000), many college professors assume first semester calculus 

students are sufficiently prepared in algebra (Avila, 2013). Nevertheless, research literature indicates many, if not 

most calculus students are weak in algebra (Budny et al., 1998; Jourdan et al., 2007; Martin, 2000; Orton, 1983). 

Calculus professors who are cognizant about students’ weakness in algebra might address the weakness by 

spending the first week of class reviewing algebra. A week of algebra review helps to hone algebra skills, 

however, a week of review does not allow enough practice over an extended period of time to reach proficiency in 

algebra. To understand how to apply algebra in calculus requires procedural knowledge (Ritter, Anderson, 

Koedinger & Corbett, 2007). To attain procedural knowledge a substantial amount of time, practice, and effort is 

needed (Pollock, Chandler & Sweller, 2002; Salden, Paas, & Van Merriënboer, 1994). 
 

Between the first and last day of calculus, students gradually become more competent in algebra. Competence 

takes time and instructional techniques must be designed around this gradual change (Ritter, Anderson, Koedinger 

& Corbett, 2007). Therefore, skipping steps should be avoided towards the beginning of the semester but, 

instructors should gradually skip steps as the semester progresses (Kalyuga, Ayres, Chandler & Sweller, 2003). 
 

Purpose of the Study 
 

Many postsecondary calculus professors assume first semester calculus students are sufficiently prepared in 

algebra and, those who are not should be weeded out (Avila, 2013; Daempfle, 2003). Most calculus textbooks 

contain one chapter or less of review and the review is neither algebraically intensive nor comprehensive (Herriott 

& Dunbar, 2009; Stewart, 2015; Tan, 2011). As a result, students will likely miss important information, make 

mistakes, and perform poorly (Ambrose, Bridges, DiPietro, Lovett & Norman, 2010). Through cognitive load 

theory assessment, the purpose of this study is to substantiate an effective approach to teaching first semester 

calculus given that students enter calculus with weak algebra skills but, gradually become more proficient in 

algebra as the semester progresses.  
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Literature Review 
 

Classification Theory  
 

Classification theories are built on the concept of classifying objects according to their properties (Hjørland & 

Pedersen, 2005). Classifying objects assumes one has some sort of knowledge about the object. If the classifier 

lacks knowledge or, the knowledge is not explicitly understood, the classification made has a high probability of 

being incorrect (Hjørland & Pedersen, 2005). If knowledge is lacking the student must acquire the knowledge but, 

according to CLT, if information is misunderstood the associated schema is poorly formed. Poorly formed schema 

result in irrelevant or incorrect information entering the working memory (WM) (Bull & Scerif, 2001). On the 

contrary, if a student can accurately classify an equation the associated schema is well-constructed. 
 

Due to well-configured schema, the expert in algebra can classify an equation as linear, quadratic, exponential, 

logarithmic, etc. The expert can also identify what procedure should be used to solve the equation (Krathwohl, 

2002; Ritter et al., 2007). For instance, assume a given equation is quadratic in form. Because the schema in the 

expert’s LTM is well structured, the expert can quickly classify the form as quadratic (Hjørland & Pedersen, 

2005). Students who can accurately classify an equation are more likely to know the procedure to solve the 

equation (Hiebert, 2013). Explicitly stated, the expert in algebra can accurately classify an equation and identify 

the procedure required to accurately solve the equation (Krathwohl, 2002; Ritter et al., 2007). However, relative 

to algebra, most students entering first semester calculus are novice learners and therefore lack the ability to 

correctly classify equations (Budny et al., 1998; Jourdan et al., 2007; Martin, 2000; Orton, 1983). 
 

Mental Calculations and Skipping Steps 
 

When doing mental calculations, errors happen because the information required while performing the 

calculations are held in the WM and are prone to forgetting (Cooper, 1998; Hitch, 1978). Adams and Hitch (1997) 

found how one’s ability to perform mental arithmetic is limited by one’s proficiency in arithmetic due to the 

limited storage capacity of the WM. The less proficient one is in arithmetic the lower their capacity to do mental 

arithmetic because those who are less proficient have yet to chunk concepts in the LTM (Gobet, 2005). Un-

chunked concepts are treated as single elements in the WM but, the WM can only handle a few single information 

elements at one time (Paas & Ayres, 2014; Van Merriënboer & Sweller, 2005). It seems reasonable to conclude 

the same would hold true for algebra due to the universal nature of chunking (Anderson, 2013; Gobet,2005; 

Koedinger & Anderson, 1990). Relative to algebra, one’s ability to perform mental algebra (skip algebraic steps) 

is limited by one’s proficiency in algebra. Because many calculus students are not proficient in algebra, most 

calculus students’ ability to skip algebraic steps would be limited (Budny et al., 1998; Helms, 2018; Martin, 2000; 

Orton, 1983). 
 

Hitch (1978) also discovered how fewer mental mistakes were made when the results of each [prior] mental 

calculation were recorded in written form. When calculations are written, the hardcopy serves as an efficient 

external working memory which frees up space in the WM for the next mental calculation (Cooper, 1998; 

Lindsay & Norman, 2013). The findings of Hitch, Cooper, and Lindsay and Norman offer evidence that providing 

a visual [written] record of previous calculations is more helpful than providing only an oral record. By 

implication, instructors should supplement written worked examples with verbal explanations. 
 

Skipping Steps 
 

To skip steps in the solution process one must do mental calculations. Practicing problems over and over is 

necessary to reach the point where one can do mental calculations and thus skip steps (Roediger & Butler, 2011; 

Schraw & McCrudden, 2003).  
 

As a student solves the same problem type over and over, the student slowly begins to solve the problem using 

different mental processes which results in the ability to skip steps (Blessing & Anderson, 1996). In the domain of 

algebra, when students first learn how to solve the equation 2 3x    most students need to see the written 

process of subtracting 2 from both sides to see why the solution is 5x    (Blessing & Anderson, 1996). In other 

words, the student needs to see the following: 
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2x  3

2

 

 2

5x



 

 

After students have done similar problem types over and over they can visualize in their mind the process of 

subtracting two from both sides. Through repeated practice, students will begin to use different mental processes 

and will have the capacity to skip steps because of their increased ability to visualize the solution process 

(Blessing & Anderson, 1996; Helms, 2018). 
 

By solving the same problem type again and again learners slowly become more knowledgeable and proficient 

with solving that particular problem type but, to skip steps, one must be knowledgeable and skilled in the problem 

type domain (Koedinger & Anderson, 1990). To skip algebraic steps in the solution process, students must move 

beyond the novice level (Koedinger & Anderson, 1990). Relative to CLT, as students solve the same problem 

type over and over the student slowly moves from a novice with poorly formed schema, to an expert with well-

configured schema and, well-configured schema are necessary for skipping steps (Van Merriënboer & Sweller, 

2005). 
 

Charness and Campbell (1988) did a study where participants mentally squared integers between 1 and 99. The 

results indicate that the majority of efficiency in solving certain problem types is due to the acquisition of 

performing several operations at once. As a concrete example, to solve 1 4
2

x
   the novice would likely take 

two steps and use two operations (Blessing & Anderson, 1996). The first step and the first operation would be 

subtracting 1 from both sides of the equation to obtain 3
2

x
 . The second step and the second operation would be 

multiplying each side by 2 to obtain the solution of 6x   (Blessing & Anderson, 1996). 
 

The expert in algebra would use rule composition to collapse the two operations into one, allowing the expert to 

skip steps and immediately obtain the correct solution of 6x   (Blessing & Anderson, 1996). Relative to CLT, 

the expert can solve the equation in one step because he or she has the knowledge elements stored in well-

constructed schema which enable the expert to combine simple procedures into complex ones (Van Merriënboer 

& Sweller, 2005). That is, the expert has chunked several knowledge elements into a single schema consisting of 

a set of algebraic concepts. 
 

Worked Examples 
 

There is strong evidence of a positive correlation between the number of steps required to solve mathematical 

problems and the resources needed by the WM (Ashcraft & Krause, 2007; Raghubar, Barnes & Hecht, 2010). 

Many problems in calculus require several steps of calculus together with several steps of algebra. The large 

number of steps requires a large amount of resources by the WM. But, the aim of CLT is to reduce the overall 

cognitive load in the WM so well-formed schemata can be constructed in LTM (Pass, Renkl & Sweller, 2004).  
 

Relative to mathematics, worked examples is an effective approach for learning because it reduces the load in the 

WM while aiding in schema acquisition (Carroll, 1994; Gerjets, Scheiter & Catrambone, 2004; Stark, Mandl, 

Gruber & Renkl, 2002; Zhu & Simon, 1987). By effectively writing worked examples, part of which includes 

writing every step in the solution process, the load in the WM is reduced for learners because the learners can 

visually see the process needed to solve the problem. In other words, a visual [written] record of previous 

calculations is helpful because the written work serves as a temporary external hard drive for the WM (Cooper, 

1998; Lindsay & Norman, 2013).  
 
 

Cautions 
 

First, though worked examples are effective for novice learners, for more advanced students, worked examples 

and including every intermediate step can become redundant (Kalyuga, et al., 2003; Van Merriënboer & Sweller, 

2005). If the content in the worked examples is novel, redundancy should not be an issue. However, as the novice 

matures into an expert, teaching strategies must change. If instructional strategies do not change with the maturing 

student, learning can be inhibited. This phenomenon is known as the expertise reversal effect (Kalyuga et al., 

2003; Paas et al., 2004). In the end, if instructors resist change and continue by using familiar and conventional 

formats for teaching throughout the semester, learning might be slow to manifest in students. 
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Second, exposing students to specific categories of worked examples helps students solve similar problems 

because the exposure and practice helps with schema construction (Gerjets et al., 2004; Ward & Sweller, 1990). 

However, it takes time for students to build well-constructed schema and to transfer the knowledge to new 

problem types (Ward & Sweller, 1990). Learning to balance the time it takes for students to build well-

constructed schema with the possibility of the expertise reversal effect requires time, patience, and practice from 

instructors. 
 

Instructional Design – Modeling with Worked Examples 
 

According to CLT, when relevant information enters the WM the goal is to encode and store the information as 

schema in LTM for later retrieval (Paas & Ayres, 2014). When needed, information in LTM is retrieved and 

moved into the WM for conscious work. After the information is processed in the WM the information is stored 

again in LTM (Kirschner, 2002; Kirschner, Kirschner & Paas, 2009). As this process continues, the schema in 

LTM becomes well configured, more transparent, more complex, and contains more information elements (Van 

Merriënboer & Sweller, 2005).  
 

When a complex schema is retrieved from LTM and moved to the WM the schema, which now contains several 

elements, is processed in the WM as one element (Van Merriënboer & Sweller, 2005). In the domain of algebra, 

the first time a student is asked to factor a trinomial, each operation (adding, subtracting, and multiplying) will be 

processed as a single information element in the WM (Paas & Ayres, 2014). Because the WM can process only a 

few novel elements at one time, when first exposed to factoring trinomials the load in the WM is high (Paas & 

Ayres, 2014). Each time another trinomial is factored, the structure of the schema in LTM becomes more finished. 

After factoring many trinomials over a long period of time the associated schema becomes more complete, better 

constructed, and contains several information elements (Ericsson & Charness, 1994; Simon & Gilmartin, 1973). 

In other words, the associated schema is now a complex schema containing several related concepts and is treated 

as a single information element when moved to the WM for processing. Through exposure and practice, factoring 

trinomials becomes easier over time because the schema can process more operations when moved into the WM 

(Roediger & Butler, 2011). Viz., during the process of factoring many trinomials, the working relationship 

between the WM and LTM is not only utilized, but strengthened (Paas & Ayres, 2014).  
 

When a complex schema in LTM is moved into the WM, the associated information element in the WM is also 

complex (Chi et al., 1981). Complex information elements can suggest a high germane load but, a well-

constructed complex information element actually reduces the overall load in the WM because the related 

knowledge elements act as a single element when processed in the WM (Van Merriënboer & Sweller, 2005). A 

high germane load can potentially reduce the overall cognitive load in the WM. Relative to algebra, the germane 

load in factoring 2 13 30x x   is relatively high due to the number of operations required (adding, subtracting, 

and multiplying with positive and negative whole numbers) (Paas, Renkl & Sweller, 2003). Because the expert 

can mentally add, subtract, and multiply quickly and efficiently all three operations act as a single knowledge 

element in the WM. Accordingly, the overall load in the WM is low for the expert (Blessing & Anderson, 1996; 

Van Merriënboer & Sweller, 2005). 
 

On the contrary, if skill acquisition has not been achieved the associated schema will be unstructured (Van Gog, 

Ericsson, Rikers & Paas, 2005). If schema in LTM have poor form, when moved into the WM, the WM becomes 

easily overloaded and learning slows to a crawl because every element must be processed separately (Van 

Merriënboer & Sweller, 2005). For example, because the novice learner is unable to quickly and efficiently add, 

subtract and multiply integers, when factoring 2 13 30x x   each operation must be done separately in the WM 

(Blessing & Anderson, 1996). In other words, the information elements in the WM are handled as three separate 

knowledge elements (adding, subtracting, and multiplying) making the overall load in the WM high.  
 

Example Based Instruction 
 

Because the aim of CLT is to find effective strategies for instruction, the aim of instructional design through CLT 

is to find teaching strategies for handling the load in the WM (Van Gog et al., 2005). One way to help manage the 

load in the WM is to create an environment where schema construction is optimized. Empirical evidence suggests 

that example based instruction is an effective approach for building schema in the early stages of schema 

acquisition, when the learner is a novice (Gerjets et al., 2004; Paas, Renkl & Sweller, 2004).  
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Novice learners need to be exposed to and work with many examples to reach the point of well-constructed 

schema (Cummings, 1992; Van Merriënboer & Sweller, 2005). To help students construct well-configured and 

complex schemas, instructors must first introduce the topic by presenting the necessary contextual knowledge, 

concepts, principles, guidelines, etc. (Cooper, 1998). Then, the instructor should do worked examples to 

demonstrate how the contextual knowledge, concepts, principles, etc. are applied. Last, students must follow up 

by practicing several similar problems for homework (Cooper, 1998; Ericsson & Charness, 1994; Simon & 

Gilmartin, 1973). 
 

The degree to which one can construct well-formed schemata that hold relevant and specific problem solving 

information defines the individual’s degree of expertise (Chi, Glaser & Rees, 1981; De Groot & de Groot, 1978; 

Sweller, Mawer & Ward, 1983). Relative to algebra, once the novice learner acquires well-constructed algebraic 

schemata the novice is no longer a novice and the learner moves closer to the expert level. As an expert, the 

algebraic schemata in LTM now contain several elements and can be processed more easily when moved into the 

WM (Van Merriënboer & Sweller, 2005). This idea of progressive hierarchical learning is reinforced by Bloom’s 

Revised Taxonomy and the Structure of the Knowledge Dimension (Krathwohl, 2002).  
 

When confronted with an equation, an expert in algebra can recognize the category type and procedure needed to 

solve the equation because the expert has declarative, conceptual, and procedural knowledge (Hiebert, 2013; 

Hjørland & Pedersen, 2005; Krathwohl, 2002; Ritter et al., 2007). The ability to identify category and process 

types is a result of well-constructed schema (Hiebert, 2013; Hjørland & Pedersen, 2005). For example, if an 

equation contains a trinomial quadratic, the expert can quickly determine it is in fact a trinomial quadratic 

(categorical classification). The expert can also determine if factoring or the quadratic formula (procedural 

knowledge) is most appropriate (Hiebert, 2013; Hjørland & Pedersen, 2005; Krathwohl, 2002). 
 

Adding Verbal Explanations 
 

According to Cohen (2014), when learning a new language (and mathematics is a language) beginners prefer that 

every word be interpreted and defined. According to Parameswaran (2010), through example based instruction, 

examples play a major role in comprehending and understanding the language of mathematics. Understanding the 

language fosters understanding of mathematics itself (Parameswaran, 2010). It is therefore important for 

instructors to carefully define mathematical terminology in a manner that students can comprehend and 

understand. If students do not understand the language of mathematics (i.e. algebra and calculus) they will 

encounter difficulty in comprehending exactly what a question is asking while doing homework and exams.  
 

Furthermore, schema development, as acquired through example based instruction, can be enhanced when 

coupled with verbal explanations (Van Gog et al., 2005). Coupling written worked examples with verbal 

explanations is typical in the traditional calculus classroom. By coupling written examples with verbal 

explanations instructors can reinforce and make clear to students how each step is done and why (Kirschner, 

Sweller & Clark, 2006). Understanding the how and why behind each step helps students understand both 

concepts and procedures which leads to more meaningful learning (Krathwohl, 2002; Van Gog et al., 2005). 
 

Guided Instruction 
 

Including verbal explanations with written worked examples results in guided instruction when the instructor 

serves as a model or coach (Kirschner, Sweller & Clark, 2006; Mayer, 2011). Guided instruction increases the 

overall effectiveness of teaching and learning (Kirschner, Sweller & Clark, 2006). According to sociocultural 

theory, guided instruction should also include frequent interaction between instructors and students (Scott & 

Palincsar, 2009). For instance, while solving an un-factorable trinomial quadratic equation, instructors could ask 

students “Why does the next step require the quadratic formula?” The question actively guides and engages 

students. Sweller and Sweller (2006) suggest how obtaining knowledge from others, such as the instructor, and 

then incorporating that knowledge into one’s own knowledge base is an effective way of obtaining and making 

sense of information.  
 

Organizing Classroom Instruction  
 

A well-organized, written classroom presentation fosters understanding (Van Merriënboer & Sweller, 2005). Even 

though this might be “common sense” many mathematics instructor’s presentations are not written in a well-

organized manner. Nevertheless, if instructors are cognizant as they teach, a well-written and organized 

presentation can be easily attained. To help with motivation, some of the reasons why a well-organized 

presentation promotes learning will be discussed. 
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Visually isolating, or chunking, each subtask (subgoal) of a worked problem increases understanding 

(Catrambone, 1995; Cooper 1998). While visually isolating each written subtask, instructors need to write the 

intermediate steps within each subtask. The written format of each subtask should also be well organized to help 

students construct well-formed schema (Van Merriënboer & Sweller, 2005). Figure 1 shows a well-organized 

teaching example for a maximum minimum problem by chunking each subtask and including almost every step, 

which facilitates understanding by aiding the construction of well-formed schema (Catrambone, 1995; Van 

Merriënboer & Sweller, 2005).  
 

In Figure 1, almost every intermediate step is included but, some parts such as subtracting 4 – 16, and solving x – 

2 = 0 and x + 2 = 0, the intermediate steps were not explicitly written and should therefore be explained verbally 

during the solution process (Kirschner, Sweller & Clark, 2006; Mayer, 2011). The reason these steps were 

skipped is because of the point in time where maximum minimum problems are covered in a typical first semester 

calculus course; towards the middle of the semester. Since maximum minimum problems are typically covered 

towards the middle of first semester calculus, students are likely to be changing from a novice level of 

understanding algebra to an intermediate level. As students’ abilities change, instruction should change with it 

(Kalyuga, Ayres, Chandler & Sweller, 2003; Van Merriënboer & Sweller, 2005). As students slowly become 

more proficient in algebra, more steps should gradually be left out so the students are not “bored” and the 

expertise reversal effect is avoided (Kalyuga, Ayres, Chandler & Sweller, 2003; Van Merriënboer & Sweller, 

2005). However, including a verbal  
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   Example: Find the critical numbers of
2

1
( )

4

x
f x

x





.
 
 

 

   Solution: Begin by finding the first derivative (use the Quotient Rule): 
2

2 2

( 4)(1) ( 1)(2 )
( )

( 4)

x x x
f x

x

  
 


    

   Next, simplify the numerator: 
2

2 2

( 4)(1) ( 1)(2 )
( )

( 4)

x x x
f x

x

  
 


 

                     
2 2

2 2

4 (2 2 )

( 4)

x x x

x

  



         

    
2 2

2 2

4 2 2

( 4)

x x x

x

  



          

    
2

2 2

2 4

( 4)

x x

x

  



                  

   By definition, to find the critical numbers, set the numerator and the denominator equal to zero and solve: 

 

           2 2 4 0x x          2 2( 4) 0x     

   Multiply both sides by −1:   Apply the square root property: 

          2 2 4 0x x         2 4 0x     

   Use the quadratic formula:   Factor the left side: 

          
2 4 16

2
x

 
                  ( 2)( 2) 0x x     

                 
2 12

2

 
                  Set each factor equal to 0 and solve:    

              
2 4 3

2

  
          2 0 2 0x x     

           
2 2 3

2

i
              2 2x x    

  Because
2 2 3

2

i
contains complex numbers, neither solution is a critical number. Therefore, the only   

  critical numbers are x = 2 and x = −2.                      

 

 Figure 1: Example of Finding Critical Numbers. Each subtask in the worked out solution is   

 chunked together. 

 

 

 

 

 

 

 

 

 

 

 

explanation of every skipped step is highly recommended throughout the entire semester (Kirschner, Sweller & 

Clark, 2006). 
 

In Figure 1, when simplifying the numerator of ( )f x it could be argued that 2x and the negative sign could have 

been distributed in a single step. If the simplification was done this way, while writing the step-by-step procedure, 

a verbal explanation should be included (Kirschner, Sweller & Clark, 2006). 
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Discussion and Implications 
 

Instructional Design  
 

Because students enter first semester calculus with weak algebra skills, the question arises, “What can be done in 

the classroom to improve algebra skills while learning the calculus?” This question can be addressed by 

considering Cognitive Load Theory (CLT). 
 

Due to students’ weak algebra skills, instructional practices should be modified to maximize learning in calculus. 

Specifically, skipping algebraic steps should be avoided, especially towards the beginning of the semester when 

students are weak in algebra because to skip steps one must do mental calculations. To do mental calculations, 

students must be proficient in algebra but, towards the beginning of calculus students are not proficient (Roediger 

& Butler, 2011; Schraw & McCrudden, 2003). It takes time and repeated practice to become proficient. 

Therefore, patience is required on behalf of instructors. 
 

In addition to avoiding skipping steps, every intermediate step should be written on the “chalk” board and 

explained verbally when teaching (Blessing & Anderson, 1996). By writing every step and verbally explaining the 

procedure when solving worked examples during class, students will learn procedural processes. Knowing 

procedures is essential for novice learners to become experts (Hiebert, 2013; Hjørland & Pedersen, 2005; 

Krathwohl, 2002). However, procedural knowledge is only part of being an expert. Obtaining conceptual 

understanding is also of the essence. To aid in understanding, instructors must define the mathematical 

terminology being used. 
 

In Martin’s (2000) study, students’ strongest performance in calculus was closely linked to procedures. On the 

contrary, the weakest performance was linked to problems requiring conceptual understanding. Martin found 

calculus students to be strongest at executing algorithms and procedures but, students were inept when it came to 

applying algorithms and procedures to underlying concepts. Martin also discussed how calculus students lack the 

understanding of the fundamental concepts of a variable. Students were found to use constants when a variable 

should have been used and vice versa. Thompson (1994) discovered how students are inclined to manipulate 

variables without thinking about the variables’ significance and what the variables represent. Again, it is vital that 

instructors thoughtfully define the mathematical terminology. 
 

Empirical evidence shows a causal relationship between conceptual knowledge and procedural knowledge relative 

to learning and understanding mathematics (Rittle-Johnson & Alibali, 1999). The findings by Rittle-Johnson and 

Alibali (1999) suggest that conceptual understanding has a bigger effect on procedural understanding than 

procedural understanding has on conceptual. Therefore, when teaching algebraic manipulations, conceptual 

understanding must be integrated into the procedures. For example, to solve the equation 2 8x  , the procedure is 

to divide both sides by 2. The concept however, involves the inverse operation. Explaining that the inverse (or 

opposite) of multiplying is dividing can help students understand why dividing both sides by 2 is necessary. 

Likewise, the procedure for solving 8
2

x
  is to multiply both sides by 2 because the inverse of dividing is 

multiplying. 
 

Instructors should also include verbal explanations about why (conceptual understanding) an algebraic procedure 

is used to solve a specific problem type (Kirschner, Sweller & Clark, 2006). Explaining “why” helps students’ 

understanding and assists in building well-configured schemas which aid in students learning how to classify 

problem types. (Hjørland & Pedersen, 2005). When students possess the knowledge to classify equations, when a 

classification is made, the probability of being correct will be elevated (Hjørland & Pedersen, 2005). If students 

are unable to classify equations, when encountered with an equation students will be less likely to solve it 

correctly because proper classification is needed to correctly solve equations. In other words, the ability to 

properly classify equations is a prerequisite to applying the necessary algebraic procedures (Krathwohl, 2002). 
 

In addition to explaining “why”, when solving worked examples during class, instructors should chunk each 

subtask on the “chalk” board to facilitate student understanding (Catrambone, 1995; Cooper 1998). Each chunk 

should also be written in an organized format. Chunking each subtask in a well-organized manner helps students 

construct well-configured schemas (Van Merriënboer & Sweller, 2005). Well-configured schemas allows students 

to recognize problem types and retrieve the appropriate information in LTM to solve the problems (Kalyuga & 

Sweller, 2004). 
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Students’ algebra skills gradually increase throughout the semester. To reduce extraneous cognitive load, 

instructional strategies should be modified to account for the gradual increase in algebra proficiency. As the 

semester progresses, instructors should gradually skip steps but, skipping steps should be completely avoided 

during the beginning of the semester, when students are still weak in algebra. As instructors begin to skip steps 

the instructors should verbalize the skipped part. For example, after applying the square root property to 
2( 1) 9x   , instructors would write 1 3x     and verbally say “After applying the square root property the 

result is…” Instructors might add “Do not forget the plus and minus.”  
 

A main reason for skipping steps (when students are sufficiently prepared) is because skipping steps requires 

students to solve equations in their mind. By solving equations in ones’ mind, students’ strategies for solving 

equations shifts and students begin to see how solving equations in fewer steps is actually easier (Blessing & 

Anderson, 1996). By skipping steps students also begin to utilize shortcuts and, their overall performance 

increases (Blessing & Anderson, 1996). Instructors must realize however, it takes time for students to reach the 

point of effectively doing mental calculations. The ability to skip steps only occurs after students have applied the 

“rules” to several cases over a long period of time (Blessing & Anderson, 1996). 
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